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SCF-CI calculations have been used to study the intermolecular energy between two hydrogen 
molecules in four different geometrical configurations. The CI matrix was diagonalized using per- 
turbation techniques. The importance of the perturbation expansion order upon the intermolecular 
energy could therefore be studied. The wave function includes all singly and doubly excited con- 
figurations. The natural orbitals have been determined and their relative importance on the inter- 
moIecular energy is considered. 
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1. Introduction 

Most of the previous calculations of the intermolecular energy between two 
atoms or non polar molecules near the Van der Waals minimum have been 
based on perturbation theory. Only recently has the treatment of the correlation 
energy by ab initio methods allowed the study of the problem by the "super- 
molecule" approach. The first papers in this series concerned the interaction of 
two Helium atoms [ 1, 2], the two procedures used being based on the idea that 
the intra-molecular correlation is constant with varying distances; simultaneously 
the interaction of two lithium atoms has been investigated [3]. The treatment of 
the intermolecular interactions from computations involving both intra- and 
intermolecular correlation is a more difficult task. Although, using a large basis 
set, this procedure may be developed extensively, since that part of the correlation 
which it is necessary to take into account is only a very small percentage of the 
total correlation energy, it is relevant to investigate how this small percentage may 
be obtained with less computational effort. Indeed, it is possible to have a good 
determination of the total correlation energy and miss that part responsible for 
the intermolecular energy, or inversely it may be possible to obtain the inter- 
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molecular part and neglect an important part of the intramolecular energy. 
Another danger of the use of a non complete basis set is the possibility of an 
artilScially deep well [4]. 

The treatment of two hydrogen molecules as a supermolecule has so far been 
very limited, Bender and Schaefer [5] with a small basis set have considered only 
the linear configuration, which is the least important in the average according 
to Evett and Margenau [6], while Tapia and Bessis [7] obtain a qualitatively 
correct minimum in the linear case (1.168 x 10 .4 a.u.), a much too deep minimum 
in the perpendicular planar case (11.589 x 10 -4 a.u.) and no minimum in the 
two others configurations. 

Recently a new method has been proposed for large scale CI calculations [8], 
the main feature of the method being the direct calculation of the CI-vector 
from a list of molecular two-electron integrals using an iterative procedure, 
the time consuming building of a Hamiltonian matrix is thus avoided. Thus, 
the only limitation to the length of the CI-vector is the available core storage. 
Very large CI expansions can therefore be used (calculations with as much as 
50000 configurations are presently being done). The computing time is also 
much shorter than with conventional CI methods. The iterative procedure 
used in the present calculations is identical to nth-order RS perturbation theory, 
which makes it possible to study the effect of the perturbation expansion order 
in the interaction energy. 

This method has been used here to investigate the intermolecular interaction 
between two hydrogen molecules. Previous calculations using a perturbative 
procedure have shown that the dispersion energy in H4 can be correctly obtained 
from an ab initio wave function if one uses basis functions of 2p-type with ex- 
ponents appropriate for the polarization of the two molecules [9]. This suggests 
that the minimum obtained by Bender and Schaefer [5] for the linear configu- 
ration, treated as a supermolecule with a small basis set, could be improved by 
using a more extended basis set containing polarization functions with small 
exponents. 

2. Details of  the Calculations 

Although the dispersion energy in a perturbative scheme of the intermolecular 
interactions can be described correctly from a small s basis set adequatly polarized 
[9], the SCF energy of the supermolecule is very sensitive to the s set, thus the 
present work has used a more extended s set than in [9], taken from the paper 
of Huzinaga [10], with six primitive Gaussians contracted to three functions 
(4, l, 1). It was shown in [9] that in the case of the dispersion energy between 
two hydrogen molecules, the number of p-type functions could be limited to a 
few. If properly chosen, the wave function built with just one such function 
gives about the same result as a wave function obtained with an extended p 
set. 

Since the part of the correlation energy in H 4, treated as a supermolecule, 
which gives the Van der Waals minimum, is of the same nature as the dispersion 
energy defined from a perturbative procedure, we expect that one p function, 
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with a small exponent is responsible for this contribution. As it is dangerous, 
in an SCF procedure, to use an unbalanced basis set, we have limited the p set 
to two functions, one with a fixed exponent (z = 1.0, giving a contribution mainly 
to intramolecular energy, the other one with an exponent ~2, optimized in H4, 
being chiefly responsible for the intermolecular energy. 

This optimization was carried out in a rectangular configuration with the 
H 2 internuclear distance fixed at 1.4 a.u.. All singly and doubly excited configu- 
rations were taken into account. The basis set is not saturated with respect to 
the correlation energy for the hydrogen molecule. A straightforward optimization 
of the orbital exponent, minimizing the total energy, is therefore not possible. 
Such a procedure gives an orbital exponent of 0.3 corresponding to a correlation 
energy of 0.0377 a.u., and a total energy of - 1.1704 a.u. for the hydrogen molecule, 
no Van der Waals minimum being obtained with such a large exponent. It was 
found that the exponent had to be smaller than 0.2 in order to obtain a minimum. 
The deepest minimum was found with (2 =0.1 giving -1.270 x 10-4a.u. and 
-2.3362 a.u. for the intermolecular and total energies respectively. This opti- 
mization of ~2 is equivalent to the assumption that a part of the energy which is 
constant at any intermolecular distance may be neglected, this part being intra- 
molecular energy. A more involved study capable of describing both the intra- 
and intermolecular correlations would need three p-type basis functions with 
exponents 1.0, 0.3 and 0.1. It is quite possible that, as described in paper [4], the 
basis set allows a better determination of the intramolecular correlation at 
intermediate distances than at large distances, giving a systematically too deep 
potential well, the extra stability being about the same for all the geometrical 
configurations since it is due to intramolecular correlation. This would probably 
not lead to any pronounced changes in the qualitative informations obtained 
around the van der Waals minimum for the following reasons: 

- the intermolecular energy due to the SCF part is hardly affected by the 
variation of (2 

- the intermolecular energy due to the correlation part is strongly depen- 
dant on (2. The direct calculation of the dispersion energy from the perturbative 
procedure used in Ref. [9] gives good values when (2 = 0.1, in the four geometrical 
configurations considered. 

Therefore, this value of (2 was used in all subsequent calculations. 
Calculations have been done for four geometric configurations, a planar 

rectangular configuration (1), (molecular axis z, intermolecular axis y); a linear 
configuration (2), (linear axis z); a planar orthogonal configuration (3), (molecular 
axes y and z for molecules A and B, respectively, intermolecular axis y); and a 
non planar orthogonal configuration (4) (molecular axes x and z for molecules 
A and B respectively, intermolecular axis y). The CI calculations included singly 
and doubly excited configurations. The number of such spin and space symme- 
trized configurations being 802, 800, 836 and 702 respectively for the four con- 
figurations. In all cases the configurations were built from canonical SCF mole- 
cular orbitals. Test calculations showed that variations of the intramolecular 
hydrogen bond distance have only a minor effect on the intermolecular energy 
at the distances of interest here. In all calculations this distance was therefore 
kept fixed at 1.4 a.u. 
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3. R e s u l t s  and D i s c u s s i o n s  

The intermolecular energies obtained for the different geometrical confi- 
gurations are shown in Table 1. The corresponding curves are also shown in 
Fig. 1. Configuration (3) is found to be most stable, with a depth of 2.26 x 10 -4 a.u. 
at the intermolecular distance 6.6 a.u. Corresponding values for the other geo- 
metries are 1.70 x 10 -4 a.u. at 6.7a.u. (4); 1.32 • 10-4a.u. at 6.7a.u. (1) and 
1.06 x 10-4a.u. at 6.9a.u. for the linear configuration, (2). The exceptional 
stability of the orthogonal configuration has been mentioned previously by 
other authors Ell, 12] being based on quadrupole and exchange interactions. 
This stability was shown in Ref. F9] to be due also to the importance of the dis- 
persion term. 

Table 2 allows a comparison with previous calculations of different accuracy. 
All these results show that it is rather difficult to obtain better than a good order 
of magnitude without performing a very accurate calculation and that a good 
agreement between the averaged energy and the experimental value can be 
rather fortuitous when all the approximations involved in these different cases 
are considered. The most striking result is, perhaps, the stability of configu- 
ration (3), which is again, as in Ref. [-9], much more pronounced than in calcula- 
tions b of Ref. [131 and c of Ref. F14]. Comparison with the CI study of Bender 
and Schaefer [53 shows the importance of the basis set, especially the diffuse 
2p orbital which accounts for most of the intermolecular energy. The difference 
would be probably still more important in the other configurations since it 
has been shown F9] that the linear case is the least sensitive to the p exponents, 

-1 

-2  

AE 

i ; 

Fig. 1. Intermolecular energies in configurations (1), (2), (3), (4) ( ), for the calculated average 
( . . . . .  ) and from experimental datas (- . . . .  ). A E is the intermolecular energy in 10 -4 a.u., d is the inter- 

molecular distance in a.u. 
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T a b l e  2. C o m p a r i s o n  of  the  i n t e r m o l e c u l a r  energies  for  f ou r  g e o m e t r i c a l  c o n f i g u r a t i o n s  (in l0  - 4  a.u.) 

C o n f i g u r a t i o n s  D i s t a n c e  a b c d P resen t  w o r k  

(1) 5.5 1.816 - 1.10t 0.698 2.25 
6 - -0 .103  - 1.076 - -0 .735  - 0 . 4 8  
6.5 - 0 . 5 4 5  - 0.803 - 0 . 9 5 5  --  1.27 

7 - 0 . 5 3 2  - 0 .557 - -0 .845  - -1 .29  
7.5 - 0 . 4 0 7  - 0 .380 - 0 . 6 2 5  - t .04 

10 - 0 . 0 6 4  - 0.061 - 0 . 0 7  

(2) 5.5 3.983 13.993 2.940 6.300 5.18 

6 0.289 3.498 0.367 1.450 0.59 
6.5 - -0 .634  0 .780 - -0 .441 - -0 .190  - 0 . 8 0  
7 - 0 . 6 9 4  0.071 - 0 . 5 5 1  - 0 . 5 8 0  - 1.05 

7.5 - -0 .539  - 0 .092 - 0 . 4 4 1  - -0 .530  - 0 . 9 2  
10 - 0 . 0 6 5  - 0 .025 - 0 . 0 0 1  - 0 . 1 2  

(3) 5.5 0.221 0.665 0 .882 0.84 

6 - 1.453 - 1.330 - 0 . 8 0 8  - 1.75 
6.5 - 1 . 6 9 1  - 1.399 - 1 . 1 3 9  - 2 . 2 5  

7 - 1 . 3 7 2  - 1.110 - 0 . 9 9 2  - 2 . 1 2  
7.5 - 1 . 0 2 4  - 0 .820 - 0 . 7 7 1  - 1 . 7 3  

10 - 0 . 2 0 2  - 0 .177 - 0 . 3 5  

(4) 5.5 1.572 - 1.652 0.367 1.43 
6 - 0 . 3 0 5  - 1.422 - 0 . 8 4 5  - 1.08 

6.5 - 0 .704 - 1.030 - 1.066 - 1.73 
7 - 0 . 6 4 3  - 0 .714 - 0 . 9 1 9  - 1.62 
7.5 - 0 . 4 9 2  - 0.491 - 0 . 6 9 8  - 1.28 

10 - 0 . 0 9 3  - 0.088 - 0 . 1 2  

( -  1.o8) o 

" F r o m  a p e r t u r b a t i o n  p r o c e d u r e ,  u s ing  bas is  B3 in Ref. [9] .  
b F r o m  Hi r sch fe lde r  a n d  Cow.  [13] .  
c F r o m  Evet t  a n d  M a r g e n a u  ( f rom the  d i a g r a m )  [14] .  

a F r o m  Bende r  a n d  Schaefe r  [5] ,  c o n s i d e r i n g  s ingly  a n d  d o u b l y  exci ted conf igu ra t ions .  
e U n c o n t r a c t e d  bas is  set. 

the larger contribution in this case arising from a au orbital. The contraction 
of the s primitive functions seems to be useful since it decreases considerably 
the computing time and introduces only a rather small error (1.27 instead of 
1.08 x l0 -4 a.u. near the Van der Waals minimum in the rectangular configu- 
ration). 

Although, according to Ref. [5], the use of a full CI does not change apprecia- 
bly the intermolecular energy, there is no evidence that this is also the case in 
configurations (3), (1) and (4), which are the most important in the average. 
Preliminary calculations have indicated that the contribution of some quadruple 
excitations is of the same order of magnitude as the intermolecular energy. 
A full CI treatment might therefore modify the numerical values. Work in this 
direction is in progress. The overall effect of the higher excitations seems to be 
to diminish the depths of the energy minima. This agrees well with the present 
results for which the average energy curve falls below the experimental values. 

The results discussed so far are concerned with the converged values. Since 
a perturbation procedure was used for the diagonalization of the CI-matrix 
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Table 3. Importance of the order of the perturbation series for the intermolecular energies (energies 
in 10 - 4  a.u.) 

Configurations d 2 na order 3 ra order 4 th order 5 th order 13 th order 
(converged) 

(1) 5,5 2,80 t .98 2,05 2.18 2.25 

6 - 0 . 0 7  - 0 . 6 8  - 0 . 6 2  - 0 . 5 2  - 0 . 4 8  

6.5 - 0 . 9 6  - 1.43 - 1.39 - 1.31 - 1.27 

7 - 1.07 - 1.41 - 1.37 - 1.31 - 1.29 

7.5 - 0 . 8 9  -- 1.14 - 1.10 -- 1.06 - 1.04 

10 - -0 .09  - 0 . 1 2  - 0 . 0 9  - 0 . 0 7  - 0 . 0 7  

(2) 5.5 5.33 4.50 4.83 5.08 5.18 

6. 0.74 0.18 0.38 0.54 0.59 

6.5 - 0 . 7 2  -- 1.06 - 0 . 9 2  - 0 . 8 2  - 0 . 8 0  

7 - 1,01 -- 1.22 - 1.12 - 1.06 - 1.05 

7.5 - - 0 . 9 2  -- t .03 - - 0 . 9 6  - - 0 . 9 2  - -0 .92  

10 - 0 . 1 3  - -0 .13  - 0 . 1 2  - 0 . 1 1  - 0 . 1 2  

(3) 5.5 1.20 0.37 0.56 0.75 0.84 

6 - 1.49 - -2 .10  -- 1.96 - 1.82 - 1.75 

6.5 - -2 .08  - 2 . 5 3  - 2 . 4 2  - 2 . 3 0  - 2 . 2 5  

7 - -1 .97  - 2 . 3 1  - 2 . 2 3  - 2 . 1 5  - 2 . 1 2  

7.5 -- 1.65 - 1.91 -- 1.83 - 1.76 -- 1.73 

10 - 0 . 3 2  - 0 . 3 7  - 0 . 3 6  - 0 . 3 5  - 0 . 3 5  

(4) 5.5 2,07 1.17 1.22 1.35 1.43 

6 - - 0 . 5 7  - 1 . 2 7  - - 1 . 2 4  - - 1 . 1 4  - -1 .08  

6.5 -- 1.33 - 1.88 -- 1.85 - 1.77 - 1,73 

7 - 1.34 - 1.75 - 1.72 -- 1.65 - 1.62 

7.5 - 1.09 -- 1.38 - 1.36 - 1.31 - 1.28 

10 - - 0 . 1 2  - 0 . 1 6  - 0 . 1 3  - -0 .11 - 0 . 1 2  

we can analyse the effect of the different orders of perturbation on the inter- 
molecular energy. At the equilibrium distance, between 80 and 95 per cent of 
the interaction energy is obtained in second order. 

Values especially close to the converged ones are obtained for the linear case. 
As expected the convergence gets slower with decreasing intermolecular distance. 
As an example only 53 % of the converged value is obtained in configuration (4) 
at the distance 6.0 a.u. while 82% is obtained in second order at 6.5 a.u. Third 
order contributions are in general of the order of 20-30%. The energies will 
therefore in most cases converge towards the final values from below. Con- 
vergence to all significant figures is obtained in order thirteen, but the values at 
the fifth order are already very close to the final ones. 

Also of interest is a study of the effect of the natural orbitals on the inter and 
intramolecular energy. When the molecules are well separated, the natural 
orbitals are localized on each molecule, with occupation numbers 1.9685 (1c r0), 
0.0197(lau), 0.0059(2~o) and 0.0027(l~zux and lrcuy when the molecular axis 
is along z) for the five most important orbitals. All these orbitals have a rather 
small coefficient (<0.2) corresponding to ~2p=0.1. These orbitals provide an 
important contribution to the intramolecutar correlation energy. The next 
orbital is a o- u orbital, with an occupation number 0.00020 and a large coefficient 
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for (2p  = 0. l followed by % (0.00019), 7zg x and rcgy (0.00013), 1fur and rcux (0.000066), 
the latter two having larger coefficients for (2p = 0.1 than for (2p = 1.0. The re- 
maining orbitals are of the type ag, a~, 7zg x, fogy. When the molecules interact 
with each other, each orbital of one molecule can be perturbed by orbitals of the 
other molecules. Depending upon symmetry, two arrangements are possible. 
Either the orbital will be still localized to one of the molecules and is only perturbed 
by the interaction, or delocalized orbitals of the types a + b and a - b are formed; 
thus it is possible to study the evolution of pairs of orbitals. Two calculations 
have been performed on the perpendicular configuration using the natural 
orbitals obtained at 100 a.u. and 6.5 a.u. While all the natural orbitals provide 
an intermolecular energy of 2.3 x 10 -4 a.u., the limitation of the orbitals whose 
occupation number is >0.00013 gives an energy of 0.94 x 10 -4 a.u. If, from 
amongst these orbitals we delete the two a, orbitals whose occupation numbers 
are 0.00020, we have only 0.34 x t0 -4 a.u. The corresponding change in the 
correlation energy being -2 .67,  -1 .26  and -0 .68  x 10 -4 a.u. respectively for 
the three groups of natural orbitals when d varies from 100 a.u. to 6.5 a.u. 

From these results we can conclude that: 
a) the natural orbitals with largest occupation number, which provide most 

of the intra-molecular correlation energy, have only a small contribution to 
the interatomic energy 

b) the a~ orbitals with a large coefficient for (2p = 0.1 are of great importance 
since their suppression involves a change of 0.60 • 10 -4 a.u. 

c) the most part of the intermolecular energy is obtained when we include 
the natural orbitals with small occupation numbers. 

This is in good agreement with the conclusion from paper [9], which stated 
that the strongest interaction comes from excitations of the types 1 ~ 1 ab0 ~ 1 ~ 1 rc~, 
since some of these excitations are suppressed when we delete the a, orbitals. 
Nevertheless some such contributions can still arise from other au orbitals with 
smaller occupation numbers which have also a large coefficient corresponding 

b orbital with occupa- to ~2p = 0.1. It is quite probable that the suppression of the n, 
tion number 0.000066 would decrease still more strongly the intermolecular 

b orbital. energy because it seems that there is only one such convenient n, 
In conclusion, the present work has shown that it is now possible to give a 

reliable qualitative description of weak intermolecular interactions between 
two hydrogen molecules treated as a supermolecule, with a rather limited basis 
set. The basis set used overestimates the numerical values somewhat. Calcula- 
tions with a larger basis set are in progress to improve the quantitative results. 
Our results have confirmed the stability of the perpendicular planar configu- 
ration. The use of natural orbitals shows clearly the respective importance of 
some orbitals on the intra and intermolecular energy, as well as the role of the 
small exponent ~2=0.1. It also allows a determination of the importance of 
certain types of excitation, as in configuration (3). 
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